

R. Pliss¹, D. Loshadkin², E. Pliss¹, A. Rusakov¹ ¹ P.G. Demidov Yaroslavl State University, Russia ² Yaroslavl State Technical University, Russia

Objective: Establishing of the mechanism of radical chain oxidation of methyl linoleate (LH) in solutions and micelles in the presence of stable nitroxyl radicals.

Methods: Oxygen monitoring: capillary micro-volumetry (in solutions), Biological oxygen monitor (YSI Model 5300A – in micelles); ESR-spectroscopy (CMS 8400, Adani); Gas chromatography (Perkin Elmer, Clarus 600); Kinetic modeling (Kinetics-2012); Quantum-chemical analysis (DFT B3LYP/6-311++G[d,p])

Conditions: solution of LH in chlorobenzene or aqueous micelles at 37.0 ± 0.1 °C. Initiators: 2,2'-Azobis(2,4-dimethyl)valeronitrile (AMNV) and 2,2'-Azobis(2-methylpropionamidine)dihydrochloride (AAPH). Surfactant: Triton X-100

LH oxidation conditions in micelles: aqueous phosphate buffer with pH = 7.4 at 37 °C

Typical kinetics of oxygen absorption during the LH oxidation in chlorobenzene

 $[LH] = 2.4 \text{ M}, P_{O2} = 20 \text{ kPa}; [>NO^{\bullet}(I)], M: 0 (1),$

Oxidation in solution

>NO• consumption and accumulation out of the corresponding hydroxylamine during the LH oxidation in chlorobenzene

Process rate does not measure up the non-inhibited reaction rate after the theoretical induction time (τ_{ind}). Thus, for curve 3 τ_{ind} is about 20 min, while after 200 min oxidation proceeds with a constant rate which is almost three times lower than the non-inhibited process rate.

Chromatography analysis results given below shows that only part of the added nitroxyl radical is consumpted during the induction period:

[>NO [•] (I)]·10 ⁴ , M	τ_{ind} , min	Consumption, %
0.8	37.6	68.12
1.6	74.1	69.80
2.4	110.0	61.99

 $W_i = 3.6 \cdot 10^{-8} \text{ M} \cdot \text{s}^{-1}$; experiment time is 240 min.

$3.31 \cdot 10^{-5}$ (2), $8.2 \cdot 10^{-5}$ (3); $W_i = 3.6 \cdot 10^{-8} \text{ M} \cdot \text{s}^{-1}$

$1 - [>NO^{\bullet}(II)]_{0} = 4.9 \cdot 10^{-4} \text{ M}; 2 - [>NOH(II)]_{0} = 5.0 \cdot 10^{-4} \text{ M}.$

These facts similar to [Pliss E.M., Tikhonov I.V., Rusakov A.I. In: Nitroxides - theory, experiment and applications. Ed. By A. Kokorin, Rijeka: InTech, 2012. P. 263] allow to assume that >NO[•] regeneration in chain termination acts takes place during the LH oxidation. This assumption is also indirectly confirmed by data from the figure above which prove >NOH formation at interaction of LO₂ with >NO[•].

Oxidation in micelles

Linear termination proceeds due to the LH dissociation via the following reaction:

> \sim CH=CH-CH=CH-CH(OO)-CH₂ $\sim \rightarrow$ \rightarrow ~CH=CH–CH=CH–CH=CH~+ HO₂•

 ΔH (DFT B3LYP/6-311+G[d,p]) of such a process is ~40 kJ/mol, and its probability in the observed system can be high enough because of the increase of LO₂• life time in micellar systems caused by a decrease of quadratic termination rate.

[LH] = 0.02 M, [Triton X-100] = 0.05 M

(a) [>NO• (III)], M: 0 (1), $8.3 \cdot 10^{-5}$ (2), $1.7 \cdot 10^{-4}$ (3), $3.31 \cdot 10^{-4}$ (4), $8.2 \cdot 10^{-4}$ (5); $W_i = 1.1 \cdot 10^{-9}$ M·s⁻¹; $W_0 = 5.6 \cdot 10^{-7} \,\mathrm{M \cdot s^{-1}}(1),$ $W = 1.3 \cdot 10^{-7} \text{ M} \cdot \text{s}^{-1}(2), W = 1.6 \cdot 10^{-8} \text{ M} \cdot \text{s}^{-1}(3).$

Regeneration scheme in solution (i) I (O₂, LH) \rightarrow L[•] (1) $L^{\bullet} + O_2 \rightarrow LO_2^{\bullet}$ (2) LO_2 + $LH \rightarrow LOOH + L$. (3) $2LO_2$ \rightarrow products (4) >NO' + LO₂' \rightarrow >NOH + products $(5) > NOH + LO_2 \rightarrow > NO' + products$ (6) $L^{\bullet} + > NO^{\bullet} \rightarrow > NOL$

Regeneration scheme in micelles (i) I (O₂, LH) \rightarrow L[•] (1) $L^{\bullet} + O_2 \rightarrow LO_2^{\bullet}$ (2) LO_2 + $LH \rightarrow LOOH + L$ (3) $2LO_2$ \rightarrow products $(3) LO_2 \rightarrow HO_2 + product$ $(4) > NO' + HO_2' \rightarrow > NOH + O_2$ $(5) > NOH + HO_2^{\bullet} \rightarrow > NO^{\bullet} + H_2O_2$ (6) L' + >NO' \rightarrow >NOL

 $W = 1.6 \cdot 10^{-8} \text{ M} \cdot \text{s}^{-1}$.

Conclusions: It is established that a cyclic mechanism of chain termination at >NO[•] is observed for LH oxidation both in solution and in micelles.

The research was performed with the financial support of RSF grant No. 14-23-00018

(b) [>NOH (III)], M: 0 (1), $5 \cdot 10^{-6}$ (2), $1 \cdot 10^{-5}$ (3), $2 \cdot 10^{-5}$ (4);